skip to main content


Search for: All records

Creators/Authors contains: "Sushkov, A. O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Understanding the thermalization dynamics of quantum many-body systems at the microscopic level is among the central challenges of modern statistical physics. Here we experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal. We use a near-surface NV center as a nanoscale magnetic sensor to probe correlation dynamics of individual spins in a dipolar interacting surface spin ensemble. We observe that the relaxation rate for each spin is significantly slower than the naive expectation based on independently estimated dipolar interaction strengths with nearest neighbors and is strongly correlated with the timescale of the local magnetic field fluctuation. We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder and present a quantitative explanation based on dynamic resonance counting. Finally, we use resonant spin-lock driving to control the effective strength of the local magnetic fields and reveal the role of the dynamical disorder in different regimes. Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles. 
    more » « less
  3. Carosi, G. ; Rybka, G. (Ed.)
    An overview of our experimental program to search for axion and axion-like-particle (ALP) dark matter using nuclear magnetic resonance (NMR) techniques is presented. An oscillating axion field can exert a time-varying torque on nuclear spins either directly or via generation of an oscillating nuclear electric dipole moment (EDM). Magnetic resonance techniques can be used to detect such an effect. The first-generation experiments explore many decades of ALP parameter space beyond the current astrophysical and laboratory bounds. It is anticipated that future versions of the experiments will be sensitive to the axions associated with quantum chromodynamics (QCD) having masses <10^(−9) eV/c^2. 
    more » « less